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Abstract. We briefly give an overview of Dynamic Epistemic Logic
(DEL), mainly in semantic terms. We focus on the simplest of epistemic
actions in DEL, called public announcements. We also sketch the effect of
more complex epistemic actions, and briefly show how als factual change
can be modelled in the same framework. We then apply the logic of pub-
lic announcements in DEL to the analysis of a knowledge puzzle, called
‘What Sum’.
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1 Dynamic Epistemic Logic

– A: As you know, ICCS 2007 takes place in Sheffield.
– B: Is that so? When I google ICCS 2007, I end up in Beijing:

http:// www. iccs-meeting.org/ , where the International Conference on
Computational Science 2007 is organized.

– C: Now is ICCS in Sheffield, or not?
– A: Ah, but I am talking about the 15th international conference on conceptual

structures, http: // www. iccs.info/ , something entirely different from the
Beijing thing! And it certainly takes place in Sheffield.

– C: OK. We now all know that the conceptual structures conference is indeed
in Sheffield.

1.1 Single-Agent Knowledge

One way of resolving an uncertainty is being explicit about acronyms. In gen-
eral, given uncertainty about the truth of a propositional statement ‘ICCS is in
Sheffield’, abbreviated as Sheff, and from now referring to the conceptual struc-
tures conference, one can associate two different ‘worlds’, or ‘states’ with it: one
� Material from section 2 is similarly found in [21], to which we acknowledge Ji Ruan’s

contributions.
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wherein it is true, and one wherein it is false. The reader of course knows it is
true. But an agent a who cannot distinguish the actual state where it is true from
the state where it is false, is said not to know that Sheff. Knowing a statement
to be true means that in all states that one considers possible, that statement
is true. As, according to a’s information, there is a possible state where Sheff is
true and one where it is false, Sheff is therefore not known. We write ¬KaSheff
for that; Ka stands for ‘agent a knows’. A simple and abstract representation of
that situation, called epistemic model or information state, (formal definitions
of language and semantics will be given in Section 2.1) is

0 1
a

a
aa

The two states are named 0 and 1. In state 0 the proposition Sheff is false,
and in state 1 it is true. The arrows, labelled with a, stand for what agent a
considers possible. First, we reason from the actual state of affairs: ICCS is in
Sheffield. This is true in state 1. To indicate that 1 is the actual state, we have
underlined it in the figure. In state 1, agent a, Anne, considers it possible that
Sheff is true. Therefore there is a reflexive arrow from 1 to itself. But she also
considers it possible that Sheff is false. Therefore there is an arrow from 1 to
0. There are more arrows in the picture! The reason for this extra structure is
that we assume that Anne is aware of her ignorance of Sheff. In terms of our
simplifying assumptions such awareness can be equated with knowledge. We then
get: Anne knows that she does not know that ICCS is in Sheffield. Formally, this
is: Ka¬KaSheff. Such reflection is called a higher-order aspect of knowledge.
In practice this means stacking K-operators to greater depth than just one.
To represent this higher-order knowledge, Anne should be able to reason from
the perspective that the actual state were 0, where Sheff is false. From that
perspective, it is also both conceivable that Sheff is true and that Sheff is false.
Therefore, there are also a-arrows from 0 to 1 and from 0 to itself.

1.2 Multi-Agent Knowledge

Let us introduce a second agent b, say Bill. We can model that Bill knows that
Anne is ignorant of Sheff but he himself is aware of the truth, and that even
Anne knows that. For a more realistic setting than the initial one, imagine the
truth about Sheff to be written on a sheet of paper in a closed envelope that is
handed to Bill, in the presense of Anne, by some third party stating ‘this envelope
contains the truth about Sheff,’ after which Bill opens the envelope and reads its
contents still in the presence of Anne. (Epistemic logic is full of such scenarios.)
The resulting situation is now perfectly modelled by the above assumptions.
And in fact by something stronger: Bill knows that Anne knows that Bill knows
the truth about Sheff, and Anne knows that, etc. We say that Anne and Bill
have common knowledge about the situation where Anne is ignorant and Bill
knowledgeable about Sheff: Cab[¬(KaSheff ∨ Ka¬Sheff) ∧ ((Sheff ∧ KbSheff) ∨
(¬Sheff ∧Ka¬Sheff))], depicted as:
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0 1
a

a
a bab

Common knowledge formalizes what agents in a group know about each other,
and about each other’s knowledge, and so on ad infinitum. We can also think
of common knowledge as background knowledge describing the structure of in-
formation states. In that sense, the model above is precisely described by the
common knowledge formula we gave. This aspect will reappear when we present
knowledge puzzles.

The epistemic logic we have now used to formalize knowledge, and how to
interpret this in relational structures as above, is generally said to have started
with [8]. The aspect of knowledge iterations, and how the concept of common
knowledge formalizes arbitrary finite iterations, is from somewhat later date.
The standard reference is [10] and another early source is within economics, [3].
Recent introductions into epistemic logic are [6,13].

1.3 Public Announcements

What happens if the truth about Sheff becomes known to Anne, for example by
way of a public announcement of Sheff, or by Bill saying “I know that ICCS is
in Sheffield”? We consider the first, although in this example the informational
consequences of both are the same. After the announcement of Sheff, both Anne
and Bill now know that Sheff is true, and that the other knows, ad infinitum.
Structurally, the result of a public announcement is the restriction of the infor-
mation state to those states where the announcement is true, and such that all
arrows are kept between these remaining states. We get

0 1
a

a
a bab 1 a b

Sheff

On the right it is common knowledge that Sheff: CabSheff. From this also follows
that Anne knows Sheff: KaSheff. In the information state before the announce-
ment, on the left, Sheff is true, and ¬KaSheff is true. We can also express the
dynamic effect of the announcement in the logical language, by stating that ini-
tially (on the left) ¬(KaSheff ∨ Ka¬Sheff) ∧ [Sheff]KaSheff is true, for ‘Anne
does not know whether ICCS is in Sheffield and (‘but’) after the announcement
that ICCS is in Sheffield, she knows that ICCS is in Sheffield.” The operator
Ka is called an epistemic operator, and the operator [Sheff] is called a dynamic
operator. It is interpreted by means of a transition from one information state
to another one, as above: to interpret [Sheff]KaSheff on the left, first do the
transition to the right, and interpret KaSheff there. As this is true, so is, on the
left, [Sheff]KaSheff.

Standardly accepted properties of knowledge are that: known information is
true (Kϕ → ϕ, for all ϕ), you are aware of (‘know’) your knowledge (Kϕ →
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KKϕ), and you are aware of your ignorance (¬Kϕ → K¬Kϕ). These corre-
spond to the structural properties of reflexivity, transitivity, and euclidicity. We
do not explain this in detail, because the outcome is that together these proper-
ties ensure that the indistinguishability relation above is always an equivalence
relation. We can therefore think of the domain of states as being partitioned into
epistemic classes, such that every class consists of epistemically indistinguish-
able states for each agent. For equivalence relations, a simpler visualization is
sufficient, where we link states in the same class, and where singleton classes,
consisting of one state, are implicit. We then get:

0 1a 1
Sheff

We will extensively use this visualization in the next section. The dynamics so
far comes under the name of ‘public announcement logic’. Standard references
are [16,4,7,23].

1.4 Sentences That Become False Because They Are Announced

In public announcement logic, not all formulas remain true after their announce-
ment, in other words, [ϕ]ϕ is not a principle of the logic. Some formulas involving
epistemic operators become false after being announced! Given the information
state again wherein Anne is ignorant about Sheff but Bill not, consider Bill say-
ing to Anne: “ICCS is in Sheffield but you don’t know that.” This is formalized
as Kb(Sheff ∧ ¬KaSheff) (the initial Kb can be equated with ‘Bill says (truth-
fully)’). Following the same recipe of restricting the information state to those
of its elements where the new information is true, we again get

0 1a 1
Kb(Sheff ∧ ¬KaSheff)

In the resulting structure, Anne knows that ICCS is in Sheffield: KaSheff. There-
fore the announced formula Kb(Sheff ∧ ¬KaSheff), that was true before the an-
nouncement, has become false after the announcement. One can also say that
the statement about Anne’s ignorance led her to factual knowledge (namely of
Sheff). In the somewhat different setting that formulas of the form p∧¬Knp can-
not be consistently known, this phenomenon is called the Moore-paradox [14,8].
In the underlying dynamic setting it has been described as an unsuccessful up-
date [7,23,17]. Similarly, statements about ignorance in the knowledge puzzles
to be discussed next, may lead to factual knowledge about the numbers these
puzzles are dealing with.

1.5 More Complex Dynamics

More complex informative scenarios are also conceivable. A variation of the sce-
nario where a closed envelope containing Sheff or ¬Sheff is handed to Bill, is that,
after the delivery, Bill is out of Anne’s sight for a moment such that, when she re-
turns, Bill may have quickly opened the envelope and read its contents. But Anne
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is not sure whether Bill has done that, or not (and again, we assume some common
awareness of this scenario between Anne and Bill). Now, even given that Sheff
is true, there are two outcomes, that are indistinguishable for Anne: either Bill
opened the envelope, and now knows whether Sheff, or he didn’t, in which case he
remains ignorant. This informational transition can be depicted as

0 1a

0 1

0′ 1′

a, b

a

aa
Sheff

wherein in both 0 and 0′, Sheff is false and in both 1 and 1′ Sheff is true. In
words: state 0 is the result when Sheff being false and b not reading the contents
of the enveloppe, 0′ is the result when Sheff is false but b does read this. We
assume (but do not draw) transitivity of indistinguishability relations, such that
0 and 1′, and 0′ and 1, are also indistinguishable for Anne. In fact none of the
four states can now be distinguished by her. Note that the above represents that
Bill actually did not look at the contents for the envelope, as in the underlined
state he still considers the alternative where Sheff is false! Such more complex
informative actions have been investigated by [4,7,19] and are also a major topic
in [23].

1.6 Belief and Plausible Reasoning

The difference between knowledge and belief is that beliefs may be false, whereas
knowledge is supposed to be true. Imagine that we do not have two agents Anne
and Bill, but just Anne. One way to model tentative belief is to associate that
with preferences in a structure. For example, given the states 0 and 1 where Sheff
is false and true, Anne considers it more likely that it is false: she prefers 0 over 1.
But given just state 1 wherein Sheff it true, she prefers 1 (over nothing, given the
absence of other states). Using labels Ka to denote epistemic indistinguishabity
and Ba doxastic preference, we can depict the transition from Anne believing
that Sheff is false to Anne believing that Sheff is true, as

0 1Ka

Ka

Ba

KaBa 1 Ka Ba

Sheff

The Ba-arrow on the right, the was not there on the left, reflects that Anne
now prefers 1. The belief operator is written as B. On the left, Anne does not
know that Sheff, and even believes that Sheff is false: ¬KaSheff ∧ Ba¬Sheff.
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Whereas on the right, she knows (and therefore also believes) that Sheff is true:
KaSheff ∧ BaSheff. Such a transition is remarkable because her factual beliefs
are now the opposite from what they were before. As this is a typical operation
‘revision’ in the area indeed known as (AGM) belief revision [1], these settings
allow for what is known as dynamic (higher-order) belief revision, on which fairly
recently progress has been made [2,20,5].

1.7 Factual Change

Let us consider a different scenario involving Anne (a). Let Crack stand for ‘the
Ming vase over there has a crack.’ An does not know whether Crack is true: she
does not see one, but it may be at the back of the vase, from her perspective.
Now Barteld walks past, brushes against the vase, and it falls to the ground
where it shatters in a thousand pieces. The uncertainty is removed: it is now
most certainly cracked. Not by someone looking at the back of the vase, leaving
the state of the world unchanged, but by someone changing the world. Given
ignorant Anne and knowledgeable Bill again, who observe Barteld’s antics, this
action can again be described as an information state transition; if we let 1 stand
for ‘Crack is true, as:

0 1a 1 1a
Crack

Note that Bill is omniscient: all his equivalence classes are singletons. More
significantly, observer that the state 0 on the left hand side transforms in a state
1: the truth of Crack changes! Again, it is now common knowledge that Crack is
true. In this case, we can write this as ¬KaCrack∧[Crack := �]KaCrack: initially,
Anne did not know whether the vase had a crack but after the vase shattered
(an assignment), she knows: it is now true in both states she considers possible.
Informative and factual changes can also be combined into more complex actions.
Such matters are being investigated in [22,18,9].

This ends our sweeping overview of dynamic epistemic logic. We now proceed
to the analysis of a knowledge puzzle. We can do this without the formalities of
the logical language and semantics, and focus on structural transitions for infor-
mation states as the above. But let it be known that this formal level certainly
hovers at the back of anything we playfully introduce! Indeed, such formalisa-
tions are behind various model checking operations that can be performed to
verify our less formal statements below [21].

2 Knowledge Puzzles

The following riddle (transcribed in our terminology) appeared in Math Horizons
in 2004, as ‘Problem 182’ in a regular problem section of the journal [11].

Each of agents Anne, Bill, and Cath has a positive integer on its fore-
head. They can only see the foreheads of others. One of the numbers is
the sum of the other two. All the previous is common knowledge. The
agents now successively make the truthful announcements:
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i. Anne: “I do not know my number.”
ii. Bill: “I do not know my number.”
iii. Cath: “I do not know my number.”
iv. Anne: “I know my number. It is 50.”
What are the other numbers?

You know your own number if and only if you know which of the three numbers
is the sum. We therefore call the riddle: ‘What Sum’. It combines features from
wisemen or Muddy Children puzzles [15] with features from the Sum and Product
riddle [12]. A common feature in such riddles is that we are given a multi-agent
system, and that successive announcements of ignorance finally result in its
opposite, typically factual knowledge. In a global state of such a system [6]
each agent or processor has a local state, and there is common knowledge that
each agent only knows its local state, and what the extent is of the domain.
If the domain consists of the full cartesian product of the sets of local state
values, it is common knowledge that agents are ignorant about others’ local
states. In that case an ignorance announcement has no informative value. For
ignorance statements to be informative, the domain should be more restrictive
than the full cartesian product (here: we only have triples (x, y, z) in which one
number is the sum of the other two). As in Muddy Children, we do not take
the ‘real’ state of the agent (the number on its forehead) as its local state, but
instead the information seen on the foreheads of others (the other numbers).
‘Sum and Product’ is also about numbers, and even about sums of numbers,
and the announcements are similar. (However, the structure of the background
knowledge is very different: in ‘Sum and Product’, there are only three distinct
abc-classes [23].)

Other epistemic riddles involve cryptography and the verification of infor-
mation security protocols (‘Russian Cards’, see [23]), or involve communication
protocols with private signals involving diffusion of information in a distributed
environment (‘100 prisoners and a lightbulb’, see [25]). The understanding of
such riddles is facilitated by the availability of suitable specification languages.
For ‘What Sum’ we propose the logic of public announcements. But ‘100 pris-
oners and a lightbulb’ requires the complex dynamics and factual change, as
discussed in Subsections 1.5 and 1.7. Verification tools, such as DEMO, an epis-
temic model checker [24], can be used when analyzing such puzzles.

2.1 Details on Public Announcement Logic

We now formally reintroduce the language of public announcement logic, the
epistemic structures in which it can be interpreted, and sufficient details of the
semantics to understand epistemic statements and transitions caused by an-
nouncements. Given a finite set of agents N and a finite or countably infinite set
of atoms P , the language of public announcement logic is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CBϕ | [ϕ]ψ

where p ∈ P , n ∈ N , andB ⊆ N are arbitrary. Other propositional and epistemic
operators are introduced by abbreviation. For Knϕ, read ‘agent n knows formula
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ϕ’. For example, if Anne knows that her number is 50, we can writeKa50a, where
a stands for Anne and some set of atomic propositions is assumed that contains
50a to represent ‘Anne has the number 50.’ For CBϕ, read ‘group of agents B
commonly know formula ϕ’. For example, we have that Cabc(20b → Ka20b):
it is common knowledge to Anne, Bill, and Cath, that if Bill’s number is 20,
Anne knows that (because she can see Bill’s number on his forehead)—instead
of {a, b, c} we often write abc. For [ϕ]ψ, read ‘after public announcement of ϕ,
formula ψ (is true)’. “After Anne announces (I know my number. It is 50.) it is
common knowledge that Bill’s number is 20” is formalised as [Ka50a]Cabc20b.

The basic structure is an epistemic model, which was already informally used
in the previous section. It is a Kripke model, wherein all accessibility relations are
equivalence relations. An epistemic model M = 〈S,∼, V 〉 consists of a domain
S of (factual) states (or ‘worlds’), accessibility ∼ : N → P(S × S), where each
∼n is an equivalence relation, and a valuation V : P → P(S). For s ∈ S, (M, s)
is an epistemic state. Given two states s, s′ in the domain, s ∼n s′ means that
s is indistinguishable from s′ for agent n on the basis of its information. For
example, at the beginning of the riddle, triples (2, 14, 16) and (30, 14, 16) are
indistinguishable for Anne but not for Bill nor for Cath. Therefore, assuming
a domain of natural number triples, we have that (2, 14, 16) ∼a (30, 14, 16).
Given a state s, Anne knows a statement if it is true in all states she renders
indistinguishable from s: given (2, 14, 16), Anne knows that Bill has 14, Ka14b,
because Bill has 14 in both (2, 14, 16) and (30, 14, 16), the two states that she
cannot distinguish. The group accessibility relation ∼B is the transitive and
reflexive closure of the union of all accessibility relations for the individuals in
B: ∼B ≡ (

⋃
n∈B ∼n)∗. This relation is used to interpret common knowledge

for group B. Instead of ‘∼B equivalence class’ (∼n equivalence class) we write
B-class (n-class). For example, if Anne sees two even numbers she knows that
it is common knowledge that all numbers are even (a full description would be
cumbersomely long in this case).

The dynamic modal operator [ϕ] is interpreted as an epistemic state trans-
former. Announcements are assumed to be truthful, and this is commonly known
by all agents. It results in the restriction of the domain to all states where the an-
nouncement is true, retaining all uncertainty on that restricted domain. We will
only present this informally in the subsequent analysis, by way of such resulting
restrictions.

2.2 Formalisation of ‘What Sum’

The set of agents {a, b, c} represent Anne, Bill and Cath, respectively. Atomic
propositions in represent that agent n has natural number i on its forehead.
Therefore the set of atoms is {in | i ∈ N

+ and n ∈ {a, b, c}}. If Anne sees (knows)
that Bill has 20 on his forehead and Cath 30, we describe this as Ka(20b ∧ 30c).
If an upper bound max for all numbers were specified in the riddle, the number
of states would be finite and “knowing the others’ numbers” would be described
as a disjunction

∨
y,z≤maxKa(yb ∧ zc). In ‘What Sum’ no upper bound is given,

so strictly we now have an infinitary disjunction
∨

y,z∈N+ Ka(yb ∧ zc), such that
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Anne saying: “I don’t know my number” is similarly described as ¬
∨

x∈N+ Kaxa

(or
∧

x∈N+ ¬Kaxa). Infinitary descriptions are, unlike infinitely large models, not
permitted in this (propositional) logic. For the moment, therefore, we restrict
our analysis of the updates mainly to a semantic one.

The epistemic model T = 〈S,∼, V 〉 is defined as follows (x, y, z ∈ N
+):

S ≡ {(x, y, z) | x = y + z or y = x+ z or z = x+ y}

∀(x, y, z), (x′, y′, z′) ∈ S (x, y, z) ∼a (x′, y′, z′) iff y = y′ and z = z′

∀(x, y, z), (x′, y′, z′) ∈ S (x, y, z) ∼b (x′, y′, z′) iff x = x′ and z = z′

∀(x, y, z), (x′, y′, z′) ∈ S (x, y, z) ∼c (x′, y′, z′) iff x = x′ and y = y′

∀k ∈ N
+ V (ka) = {(x, y, z) ∈ S | x = k}

∀k ∈ N
+ V (kb) = {(x, y, z) ∈ S | y = k}

∀k ∈ N
+ V (kc) = {(x, y, z) ∈ S | z = k}

For the sequel, it is important to realise that, for each agent n, the set of states
in which (s)he does not know his or her own numbers, is

{(x, y, z) ∈ S | ∃(x′, y′, z′) �= (x, y, z) and (x, y, z) ∼n (x′, y′, z′)}

A relevant question is what the background knowledge is that is available to
the agents, i.e., what the abc-classes in the model are (an abc-class, or {a, b, c}
equivalence class, of a state s in the model consists of all states t such that
s ∼{a,b,c} t, where ∼{a,b,c} = (∼a ∪ ∼b ∪ ∼c)∗, as above).

An abc-class in T can be visualised as an infinite binary tree. The depth
of the tree reflects the following order on number triples in the domain of T :
(x, y, z) > (u, v, w) iff (x > u and y = v and z = w) or (x = u and y > v and
z = w) or (x = u and y = v and z > w). If (x, y, z) > (u, v, w) according to this
definition, (x, y, z) is a child of (u, v, w) in the tree. Every node except the root
has one predecessor and two successors, as in Figure 1.

The root of each tree has label (2x, x, x) or (x, 2x, x) or (x, x, 2x). In each such
a root, at least one of the agents knows his or her own number. The idea now is
that after an announcement by agent n of the form ”I don’t know my number”,
such a root where n knows his number can be eliminated, and the tree gets split
in two subtrees. Starting with an arbitrary state (x, y, z) in the tree, such that
one is the sum of the other two, replace that sum by the difference of the other
two; one of those other two has now become the sum; if you repeat the procedure,
you always end up with two equal numbers and their sum. An agent who sees two
equal numbers, immediately infers that its own number must be their sum (twice
the number that is seen), because otherwise it would have to be their difference
0 which is not a positive natural number. It will be obvious that: the structure
truly is a forest (a set of trees), because each node only has a single parent; all
nodes except roots are triples of three different numbers; and all trees are infinite.
All abc-trees are isomorphic modulo (i) a multiplication factor for the numbers
occurring in the arguments of the node labels, and modulo (ii) a permutation
of arguments and a corresponding swap of agents, i.e., swap of arc labels. For
example, the numbers occurring in the tree with root (6, 3, 3) are thrice the
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. . .
(|x − y|, x, y)

(x + y, x, y)

(x + y, x + 2y, y) (x + y, x, 2x + y)
. . . . . .

a

b c

As an illustration, consider (30,14,16)
again. It has the following path to
the root: (30,14,16) ∼a (2,14,16) ∼c

(2,14,12) ∼b (2,10,12) ∼c (2,10,8) ∼b

(2,6,8) ∼c (2,6,4) ∼b (2,2,4). The only
sibbling of (30,14,16) is (2,18,16): it
is ∼b-connected to the shared parent
(2,14,16).

Fig. 1. (Left) Modulo agent symmetry, all parts of the model T branch as here. Arcs
connecting nodes are labelled with the agent who cannot distinguish those nodes.
(Right) A description of part of the tree with (30,14,16).

corresponding numbers in the tree with root (2, 1, 1); the tree with root (2, 1, 1)
is like the tree for root (1, 2, 1) by applying permutation (213) to arguments
and (alphabetically ordered) agent labels alike. The left side of Figure 3 shows
the trees with roots (2, 1, 1), (1, 2, 1), and (1, 1, 2). For simplicity, we write 211
instead of (2, 1, 1), etc. In the left tree, for Bill (2, 1, 1) is indistinguishable from
(2, 3, 1) wherein his number is the sum of the other two instead of their difference;
for Anne triple (2, 3, 1) is indistinguishable from (4, 3, 1), etc.

Processing Announcements. The result of an announcement is the restriction of
the model to all states where the announcement is true. We can also apply this
to the ignorance announcements of agents in ‘What Sum’. Consider an abc-tree
T in T . Let n be an arbitrary agent. Either the root of T is a singleton n-class, or
all its n-classes consist of two elements: a two-element class represents the agent’s
uncertainty about its own number. An ignorance announcement by agent n in
this riddle corresponds to removal of all singleton n-classes from the model T .
This means that some of the model’s trees are split into two subtrees (with both
children of the original root now roots of infinite trees).

An ignorance announcement may have very different effects on abc-classes
that are the same modulo agent permutations. For example, given abc-classes
in T with roots 121, 112, and 211, the effect of Anne saying that she does not
know her number only results in elimination of 211, as only the first abc-class
contains an a-singleton. Given 211, Anne knows that she has number 2 (as 0
is excluded). But triple 112 she cannot distinguish from 312, and 121 not from
321. Thus one proceeds with all three announcements. See also Figure 2.

Solving the riddle. We have now sufficient background to solve the riddle. We
apply the successive ignorance announcements to the three classes with roots
(2, 1, 1), (1, 2, 1), and (1, 1, 2), determine the triples wherein Anne knows the
numbers, and from those, wherein Anne’s number divides 50. See Figure 3—
note that in triple (8, 3, 5) Anne also knows her number: the alternative (2, 3, 5)
wherein her number is 2 has been eliminated by Cath’s, last, ignorance announce-
ment. The unique triple wherein Anne’s number divides 50 is (5, 2, 3). In other
words, the unique abc-tree in the entire model T where Anne knows that she
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211

231 213

431 235 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

b c

a c a b

b c a b b c a c

231 213

431 235 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

a c a b

b c a b b c a c

213

431 235 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

a b

b c a b b c a c

431 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

b c b c a c

Fig. 2. The results of three ignorance announcements (by a, b, and c, respectively) on
the abc-class with root (2, 1, 1)

211

231 213

431 235 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

b c

a c a b

b c a b b c a c

431 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

b c b c a c

121

321 123

341 325 143 523

541 347 385 725 743 145 583 527. . . . . . . . . . . . . . . . . . . . . . . .

a c

b c b a

a c b a a c b c

321

341 325 143 523

541 347 385 725 743 145 583 527. . . . . . . . . . . . . . . . . . . . . . . .

b c

a c b a a c b c

112

132 312

134 532 314 352

154 734 538 572 374 514 358 752. . . . . . . . . . . . . . . . . . . . . . . .

b a

c a c b

b a c b b a c a

132 312

134 532 314 352

154 734 538 572 374 514 358 752. . . . . . . . . . . . . . . . . . . . . . . .

c a c b

b a c b b a c a

Fig. 3. On the left, abc-classes of the model T with root 211, 121, and 112. Any other
abc-class is isomorphic to one of these, modulo a multiplication factor. The results of
the (combined) three ignorance announcements on those abc-classes are on the right.
The triples in bold are those where Anne knows her number.

has 50 after the three ignorance announcements, is the one with root (10, 20, 10).
The solution to the riddle is therefore that Bill has 20 and Cath has 30. After the
three announcements in the abc-class with root (10, 20, 10), the triple (50, 20, 30)
remains wherein Anne knows that Bill has 20 and Cath 30.

The original riddle could have been more restrictive: in the quoted version
[11] it is not required to determine who holds which other number, but as we
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have seen this can also be determined. It also occurred to us that the original
riddle has the following attractive variant:

Each of agents Anne, Bill, and Cath has a positive integer on its fore-
head. They can only see the foreheads of others. One of the numbers is
the sum of the other two. All the previous is common knowledge. The
agents now successively make the truthful announcements:
i. Anne: “I do not know my number.”
ii. Bill: “I do not know my number.”
iii. Cath: “I do not know my number.”
What are the numbers, if Anne now knows her number and if all numbers
are prime?

Consulting Figure 3, it will be obvious that the answer should be: ‘5, 2, and 3’.

2.3 Variations of the Riddle

Suppose we use an upper bound max for the numbers. Let T max be the cor-
responding epistemic model. An abc-tree is now cut at the depth where nodes
(x, y, z) occur such that the sum of two of the arguments x, y, z exceeds max.
This finite approximation may not seem a big deal but it makes the problem
completely different: abc-classes will not just have roots wherein the agent may
know his number (because the other numbers are equal) but will also have leaves
wherein the agent may know his number (because the sum of the other two num-
bers exceeds max). In other words, we have far more singleton equivalence classes.
Let max = 10. Node (2, 5, 7) in the abc-class with root (2, 1, 1) has only a b-child
(2, 9, 7) and a c-parent (2, 5, 3), and not an a-child, as 5+7 = 12 > max. So Anne
immediately knows that her number is 2. All roots (2x, x, x) with 3x > max form
singleton abc-classes in T max, for the same reason. In such models it is no longer
the case that all equivalence classes are isomorphic modulo a multiplication fac-
tor and swapping of agent labels—but sufficient good properties for systematic
exploration remain (see [21] for details).

Suppose we start counting from 0 instead of 1. In that case each abc-equivalence
class with root (2x, x, x) is extended with one more node: the new root (0, x, x)
is indistinguishable from (2x, x, x) for Anne. An agent who sees a 0, infers that
his number must be the other number that (s)he sees. If there is a 0, two of the
three agents see that. Therefore, the root has just one child (2x, x, x); if the triple
is (0, x, x) Bill and Cath know that their number is x.

Now consider the following version of the riddle: If the three numbers have
an upper bound, and if 0 is allowed, for which range of the upper bound does
Anne now always know the numbers after the three announcements? Let max
be the upper bound. The requested range includes max = 10. Figure 4 shows
that from abc-class with root 011 the triples 211 and 213 remain. There is one
other abc-class in the epistemic model T 10

0 (for 0 ≤ x, y, z ≤ 10) that remains
non-empty after the three announcements, namely the one with root 022: the
triples 242 and 246 then remain. Therefore, whatever the numbers, Anne now
knows her’s.
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Fig. 4. Successive announcements in the abc-class with root 011 in model T 10
0 . The

horizontal order of branches has no meaning. Symbol A represents 10.

The solution range is: 8 ≤ max ≤ 13. This means that if max = 7, the
three announcements cannot be made (without lying). And if max = 14, it is
not always the case that Anne knows her number: for example, if Bill has 1
and Cath has 3, Anne cannot determine whether her number is 2 or 4; 213
and 413 are in that case the only two triples where Anne is still uncertain.
For this sort of finetuning a model checker was helpful and even essential [21].
The interplay between designing riddles, model checking, and dynamic epistemic
logical analyses, is a good playing ground between theory and practice of multi-
agent system dynamics.
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